Depth of Associated Graded Rings via Hilbert Coefficients of Ideals
نویسنده
چکیده
Given a local Cohen-Macaulay ring (R,m), we study the interplay between the integral closedness – or even the normality – of an m-primary R-ideal I and conditions on the Hilbert coefficients of I . We relate these properties to the depth of the associated graded ring of I .
منابع مشابه
Results on Generalization of Burch’s Inequality and the Depth of Rees Algebra and Associated Graded Rings of an Ideal with Respect to a Cohen-Macaulay Module
Let be a local Cohen-Macaulay ring with infinite residue field, an Cohen - Macaulay module and an ideal of Consider and , respectively, the Rees Algebra and associated graded ring of , and denote by the analytic spread of Burch’s inequality says that and equality holds if is Cohen-Macaulay. Thus, in that case one can compute the depth of associated graded ring of as In this paper we ...
متن کاملTopics on the Ratliff-Rush Closure of an Ideal
Introduction Let be a Noetherian ring with unity and be a regular ideal of , that is, contains a nonzerodivisor. Let . Then . The :union: of this family, , is an interesting ideal first studied by Ratliff and Rush in [15]. The Ratliff-Rush closure of is defined by . A regular ideal for which is called Ratliff-Rush ideal. The present paper, reviews some of the known prop...
متن کاملGraded Rings Associated with Contracted Ideals
The study of the ideals in a regular local ring (R,m) of dimension 2 has a long and important tradition dating back to the fundamental work of Zariski [ZS]. More recent contributions are due to several authors including Cutkosky, Huneke, Lipman, Sally and Tessier among others, see [C1, C2, H, HS, L, LT]. One of the main result in this setting is the unique factorization theorem for complete (i....
متن کاملHilbert Coefficients and Depths of Form Rings
We present short and elementary proofs of two theorems of Huckaba and Marley, while generalizing them at the same time to the case of a module. The theorems concern a characterization of the depth of the associated graded ring of a Cohen-Macaulay module, with respect to a Hilbert filtration, in terms of the Hilbert coefficient e1. As an application, we derive bounds on the higher Hilbert coeffi...
متن کاملFiber Cones of Ideals with Almost Minimal Multiplicity
Fiber cones of 0-dimensional ideals with almost minimal multiplicity in CohenMacaulay local rings are studied. Ratliff-Rush closure of filtration of ideals with respect to another ideal is introduced. This is used to find a bound on the reduction number with respect to an ideal. Rossi’s bound on reduction number in terms of Hilbert coefficients is obtained as a consequence. Sufficient condition...
متن کامل